nntoolbox.vision.components.upsample module¶
-
class
nntoolbox.vision.components.upsample.
PixelShuffleConvolutionLayer
(in_channels: int, out_channels: int, upscale_factor: int, activation=<class 'torch.nn.modules.activation.ReLU'>, normalization=<class 'torch.nn.modules.batchnorm.BatchNorm2d'>, blur: bool = True)[source]¶ Bases:
torch.nn.modules.container.Sequential
Upsample the image using normal convolution follow by pixel shuffling
References:
https://arxiv.org/pdf/1609.05158.pdf
https://arxiv.org/pdf/1806.02658.pdf (additional blurring at the end)
-
initialize_conv
(conv, in_channels: int, out_channels: int, upscale_factor: int)[source]¶ Initialize according to: https://arxiv.org/pdf/1707.02937.pdf :param conv: :param in_channels: :param out_channels: :param upscale_factor: :return:
-
training
: bool¶
-
-
class
nntoolbox.vision.components.upsample.
ResizeConvolutionalLayer
(in_channels, out_channels, activation=<class 'torch.nn.modules.activation.ReLU'>, normalization=<class 'torch.nn.modules.batchnorm.BatchNorm2d'>, mode='bilinear')[source]¶ Bases:
torch.nn.modules.module.Module
Upsample the image (using an interpolation algorithm), then pass to a conv layer
-
forward
(input, out_h, out_w)[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
training
: bool¶
-