nntoolbox.optim.utils module

nntoolbox.optim.utils.change_lr(optim: torch.optim.optimizer.Optimizer, lrs: Union[float, List[float]])[source]

Change the learning rate of an optimizer

Parameters
  • optim – optimizer

  • lrs – target learning rate

nntoolbox.optim.utils.get_lr(optim: torch.optim.optimizer.Optimizer) → List[float][source]
nntoolbox.optim.utils.load_optimizer(optimizer: torch.optim.optimizer.Optimizer, path: str)[source]

Load optimizer state for resuming training

Parameters
  • optimizer

  • path

nntoolbox.optim.utils.plot_schedule(schedule_fn: Callable[[int], float], iterations: int = 30)[source]

Plot the learning rate schedule function

Parameters
  • schedule_fn – a function that returns a learning rate given an iteration

  • iterations – maximum number of iterations (or epochs)

Returns

nntoolbox.optim.utils.save_optimizer(optimizer: torch.optim.optimizer.Optimizer, path: str)[source]

Save optimizer state for resuming training

Parameters
  • optimizer

  • path