nntoolbox.components.rbf module¶
-
class
nntoolbox.components.rbf.
RBFLayer
(in_features: int, out_features: int, trainable_centers: bool = True, normalized: bool = False, kernel: Optional[nntoolbox.components.kernel.DistKernel] = None, initial_centers: Optional[torch.Tensor] = None)[source]¶ Bases:
torch.nn.modules.linear.Linear
RBF Layer (used for output or as the hidden layer for RBF network)
References:
Lecun et al. “Gradient-Based Learning Applied to Document Recognition.” http://yann.lecun.com/exdb/publis/pdf/lecun-98.pdf
-
centroids_initialize
(input: torch.Tensor, labels: torch.Tensor)[source]¶ (Re-)initialize the centers based on nearest centroids algorithm
- Parameters
input –
labels –
-
cluster_initialize
(input: torch.Tensor)[source]¶ (Re-)initialize the centers based on k-mean clustering on the input
- Parameters
input –
-
forward
(input: torch.Tensor) → torch.Tensor[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
in_features
: int¶
-
out_features
: int¶
-
weight
: torch.Tensor¶
-