nntoolbox.components.dndf module¶
Deep Neural Decision Forest
-
class
nntoolbox.components.dndf.DNDF(in_features: int, out_features: int, n_trees: int, tree_depth: int, output_activation=functools.partial(<class 'torch.nn.modules.activation.Softmax'>, dim=1))[source]¶ Bases:
nntoolbox.components.merge.MeanReferences:
Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, Samuel Rota Bulo. “Deep Neural Decision Forests.” https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Kontschieder_Deep_Neural_Decision_ICCV_2015_paper.pdf
-
training: bool¶
-
-
class
nntoolbox.components.dndf.DNDFTree(in_features: int, out_features: int, tree_depth: int, output_activation=functools.partial(<class 'torch.nn.modules.activation.Softmax'>, dim=1))[source]¶ Bases:
torch.nn.modules.module.ModuleBased on Deep Neural Decision Forest, but with the leaf node parameterized for end-to-end training, and the decision trees balanced. Use BFS + DP for fast path computations
References:
Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, Samuel Rota Bulo. “Deep Neural Decision Forests.” https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Kontschieder_Deep_Neural_Decision_ICCV_2015_paper.pdf
-
forward(input: torch.Tensor) → torch.Tensor[source]¶ Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
-
training: bool¶
-